Ecological Engineering

1.    Concerning RNA-guided gene drives for the alteration of wild populations.
         Esvelt KM^, Smidler AL, Catteruccia F^, Church GM^ (2014)
         eLife, (10.7554/eLife.03401); PDF

2.    Safeguarding CRISPR-Cas9 gene drives in yeast.
          DiCarlo JE*, Chavez A*, Dietz SL, Esvelt KM^, Church GM^ (2015)
          Nat. Biotechnology, 17 Nov 2015 (10.1038/nbt.3412). PDF
          bioRxiv preprint, (10.1101/013896).

3.    Evolutionary dynamics of CRISPR gene drives.
          Noble C, Olejarz J, Esvelt KM^, Church GM, Nowak MA^ (2017)
          Science Advances 3(4): e1601964 (10.1126/sciadv.1601964). PDF
          bioRxiv preprint, (10.1101/057281).

4.    Daisy-chain gene drive systems for the alteration of local populations.
          Noble C*, Min J*, Olejarz J, Buchthal J, Chavez C, Smidler AL, DeBenedictis EA, Church GM, Nowak MA, Esvelt KM^ (2016)
          bioRxiv preprint, (10.1101/057307).

5.    Daisyfield gene drive systems harness repeated genomic elements as a generational clock to limit spread.
          Min J, Noble C, Najjar D, Esvelt KM^ (2017)
          bioRxiv preprint, (10.1101/104877).

6.    Daisy quorum drives for the genetic restoration of wild populations.
          Min J, Noble C, Najjar D, Esvelt KM^ (2017)
          bioRxiv preprint, (10.1101/115618).

7.    Current CRISPR gene drives are likely to be highly invasive in wild populations.
          Noble C, Adlam B, Church GM, Esvelt KM^, Nowak MA (2017)
          eLife open-access, (10.7554/eLife.33423).
          bioRxiv preprint, (10.1101/219022).

Reviews, Consequences, and Policy

1.    Regulating gene drives.
         Oye KA*, Esvelt KM*, Appleton A, Catteruccia F, Church GM, Kuiken T, Bar-Yam Lightfoot S, McNamara J, Smidler A,
         Collins JP (2014)
         Science, 17 July 2014 (10.1126/science.1254287).  PDF 

2.    Safeguarding gene drive experiments in the laboratory.
          Akbari AS, Bellen HJ, Bier E^, Bullock SL, Burt A, Church GM, Cook KR, Duchek P, Edwards OR, Esvelt KM^, Gantz VM, Golic KG,   
          Gratz SJ, Harrison MM, Hayes KR, James AA, Kaufman TC, Knoblich J, Malik HS, Matthews KA, O'Connor-Giles KM, Parks AL,
          Perrimon N, Port F, Russell S, Ueda R, Wildonger J (2015)
          Science, 30 July 2015 (10.1126/science.aac7932).  PDF 

3.    Calls for Caution in Genome Engineering Should Be a Model for Similar Dialogue on Pandemic Pathogen Research.
          Lipsitch M, Esvelt KM, Inglesby T^ (2015)
          Ann Intern Med, (10.1038/534153a); online article

4.    Gene Editing Can Drive Science to Openness.
          Esvelt KM (2016)
          Nature, (10.7326/M15-1048; open access

5.    Precaution: Open Gene Drive Research.
          Esvelt KM (2017)
          Science, (10.1126/science.aal5325); PDF

6.    Conservation demands safe gene drive.
          Esvelt KM, Gemmell N (2017)
          PLOS Biology, (10.1371/journal.pbio.2003850); open access

7.    Harnessing gene drive.
          Min J, Smidler AL, Najjar DA, Esvelt KM^ (2018)
          Journal of Responsible Innovation 5:sup1, S40-S65, (10.1080/23299460.2017.1415586), PDF.

8.    Driving towards ecotechnologies.
          Najjar DA, Normandin A, Strait EA, Esvelt KM^ (2018)
          Pathogens and Global Health 5:sup1, S40-S65, (10.1080/20477724.2018.1452844), PDF.

Directed Evolution

1.    A system for the continuous directed evolution of biomolecules.
          Esvelt KM, Carlson JC, Liu DR (2011).
          Nature, 472(7344), 499-503. PMID: 21478873.  PDF

2.    Experimental interrogation of the path dependence and stochasticity of protein evolution using phage-assisted continuous
          Dickinson BC, Leconte AM, Allen B, Esvelt KM^, Liu DR^ (2013)
          Proc. Nat. Acad. Sci. USA, 110(22), 9007-9012. PMID: 23674678.  PDF

Genome Engineering

1.    Genome-scale engineering for systems and synthetic biology.  [Review]
          Esvelt KM*, Wang HH* (2013)
          Mol. Syst. Biol., 9, 641. PMID: 23340847.  PDF

2.    RNA-guided human genome engineering via Cas9.
          Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013)
          Science, 339(6121): 823-826. PMID: 23287722.  PDF

3.    Heritable genome editing in C. elegans via a CRISPR-Cas9 system.
          Friedland AE, Tzur YB, Esvelt KM, Colaiácovo MP, Church GM, Calarco JA (2013) 
          Nature Methods, 10(8), 741-743. PMID: 23817069.  PDF

4.    Cas9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering.
          Mali P*, Aach J*, Stranges PB, Esvelt KM, Moosburner M, Kosuri S, Yang L, Church GM (2013)
          Nature Biotechnology, 31(9), 833-838. PMID: 23907171.  PDF

5.    Cas9 as a versatile tool for engineering biology.  [Review]
Mali P*, Esvelt KM* , Church GM (2013)
Nature Methods, 10(10), 957–963. PMID: 24076990.  PDF

6.    Orthogonal Cas9 proteins for RNA-guided genome regulation and editing.
          Esvelt KM*, Mali P*, Braff JL, Moosburner M, Yaung SJ, Church GM (2013)
          Nature Methods, 10(11): 1116-1121 PMID: 24076762.  PDF

Basic Science

1.   CRISPR/Cas9-mediated phage resistance is not impeded by the DNA modifications of phage T4.
          Yaung SJ*, Esvelt KM*, Church GM (2014) PLoS One PDF

2.    Inhibition of bacterial conjugation by phage M13 and its protein g3p: quantitative analysis and model.
          Lin A, Jimenez J, Derr J, Vera P, Manapat ML, Esvelt KM, Villanueva L, Liu DR, Chen IA (2011)
          PLoS One 6(5):e19991 PMID: 21478873. 

*co-first author        ^co-corresponding author

PDF versions provided for fair use.